На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
1. Строится двоичная запись числа N.
2. К этой записи дописываются справа ещё два разряда по следующему правилу:
а) складываются все цифры двоичной записи числа N, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;
б) над этой записью производятся те же действия – справа дописывается остаток от деления суммы её цифр на 2.
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.
Укажите минимальное число R, которое превышает число 396 и может являться результатом работы данного алгоритма. В ответе это число запишите в десятичной системе счисления.
По каналу связи передаются сообщения, содержащие только четыре буквы: З, А, Р, Я; для передачи используется двоичный код, удовлетворяющий условию Фано. Для букв Я, Р, З используются такие кодовые слова: Я – 0, Р – 101; З – 110.
Укажите кратчайшее кодовое слово для буквы А, при котором код будет удовлетворять условию Фано. Если таких кодов несколько, укажите код снаибольшим числовым значением.
Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах vиwобозначают цепочки цифр.
А)заменить (v,w).
Эта команда заменяет в строке первое слева вхождение цепочки vна цепочку w. Например, выполнение команды
заменить (111, 27)
преобразует строку 05111150 в строку 0527150.
Если в строке нет вхождений цепочки v, то выполнение команды заменить (v,w) не меняет эту строку.
Б)нашлось (v).
Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.
Цикл
ПОКА условие
последовательность команд
КОНЕЦ ПОКА
выполняется, пока условие истинно.
В конструкции
ЕСЛИ условие
ТО команда1
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно).
В конструкции
ЕСЛИ условие
ТО команда1
ИНАЧЕ команда2
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно) или команда2 (если условие ложно).
Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 81 идущей подряд цифры 1? В ответе запишите полученную строку.
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в двараза. Например, пусть в одной куче 10 камней, а в другой 5 камней, такую позицию в игре будем обозначать (10, 5). Тогда за один ход можно получить любую из четырёх позиций: (11, 5), (20, 5), (10, 6), (10, 10). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 107. Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой будет 107 или больше камней.
В начальный момент в первой куче было 13 камней, во второй куче – Sкамней, 1 ≤ S ≤ 93.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т.е. не являющиеся выигрышными независимо от игры противника.
Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.
Для хранения произвольного растрового изображения размером 1536×2048 пикселей отведено не более 6 Мбайт памяти без учёта размера заголовка файла. Для кодирования цвета каждого пикселя используется одинаковое количество бит, коды пикселей записываются в файл один за другим без промежутков. Какое максимальное количество цветов можно использовать в изображении?
На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция Fложна.
Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных w, x,y,z.
Переменная 1
Переменная 2
Переменная 3
Переменная 4
Функция
F
1
0
0
1
0
0
0
0
1
0
1
0
1
1
0
В ответе напишите буквы w, x, y,z в том порядке, в котором идут соответствующие им столбцы (сначала – буква, соответствующая первому столбцу; затем – буква, соответствующая второму столбцу, и т.д.) Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Если бы функция была задана выражением ¬x\/y,зависящим от двух переменных: xиy, и был приведён фрагмент её таблицы истинности, содержащий все наборы аргументов, при которых функция истинна.
Переменная 1
Переменная 2
Функция
F
0
0
1
1
0
1
1
1
1
Тогда первому столбцу соответствовала бы переменная y,а второму столбцу – переменная x.В ответе следует написать: yx.
Задание выполняется с использованием прилагаемых к заданию файлов.
Организация купила для своих сотрудников все места в нескольких подряд идущих рядах на концертной площадке. Известно, какие места уже распределены между сотрудниками. Найдите ряд с наибольшим номером, в котором есть два соседних места, таких что слева и справа от них в том же ряду места уже распределены (заняты). Гарантируется, что есть хотя бы один ряд, удовлетворяющий этому условию. В ответе запишите два целых числа: номер ряда и наименьший номер места из найденных в этом ряду подходящих пар свободных мест.
Входные данные
В первой строке входного файла находится число N –– количество занятых мест (натуральное число, не превышающее 10 000). Каждая из следующих N строк содержит два натуральных числа, не превышающих 100 000: номер ряда и номер занятого места.
Выходные данные
Два целых неотрицательных числа: номер ряда и наименьший номер места в выбранной паре.
Пример входного файла:
7
40 3
40 6
60 33
50 125
50 128
50 64
50 67
Условию задачи удовлетворяют три пары чисел: 40 и 4, 50 и 126, 50 и 65. Ответ для приведённого примера: