Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
–– Петя не может выиграть за один ход;
–– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
Найденные значения запишите в ответе в порядке возрастания.
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в три раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 65. Победителем считается игрок, сделавший последний ход, т.е. первым получивший такую позицию, при которой в кучах находится 65 или больше камней.
В начальный момент в первой куче было шесть камней, во второй куче – S камней; 1 ≤ S≤ 58.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.
Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.
Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
–– Петя не может выиграть за один ход;
–– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
Найденные значения запишите в ответе в порядке возрастания.
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в двараза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда количество камней в куче становится не менее 38. Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой находится 38 или больше камней.
В начальный момент в куче было S камней, 1 ≤ S ≤ 37.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Укажите минимальное значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.
Задание выполняется с использованием прилагаемых файлов.
Текстовый файл состоит из заглавных букв латинского алфавита Q, R, W и цифр 1, 2, 4.
Определите в прилагаемом файле максимальное количество идущих подряд символов, среди которых ни одна буква не стоит рядом с буквой, а цифра – с цифрой.
Для выполнения этого задания следует написать программу.