Задание выполняется с использованием прилагаемых файлов.
C помощью текстового редактора определите, сколько раз, не считая сносок, встречается сочетание букв «час» или «Час» только в составе других слов, но не как отдельное слово, в тексте повести А.И. Куприна «Поединок». В ответе укажите только число.
Задание выполняется с использованием прилагаемых файлов.
Откройте файл электронной таблицы, содержащей в каждой строке пять натуральных чисел. Определите количество строк таблицы, содержащих числа, для которых выполнены оба условия:
– в строке все числа различны;
– утроенное произведение минимального и максимального чисел строки не больше, чем удвоенное произведение трёх её оставшихся чисел.
Задание выполняется с использованием прилагаемых файлов.
Откройте файл электронной таблицы, содержащей в каждой строке пять натуральных чисел. Определите количество строк таблицы, содержащих числа, для которых выполнены оба условия:
– в строке все числа различны;
– удвоенная сумма максимального и минимального чисел строки не больше суммы оставшихся трёх её чисел.
По каналу связи передаются сообщения, содержащие только четыре буквы: А, Б, В, Г. Для передачи используется двоичный код, удовлетворяющий условию Фано. Для букв А, Б, В используются такие кодовые слова: А – 1010; Б – 1100; В – 0.
Укажите кратчайшее кодовое слово для буквы Г, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наибольшим числовым значением.
Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
1. Строится двоичная запись числа N.
2. Далее эта запись обрабатывается по следующему правилу:
а) если число N делится на 3, то к этой записи дописываются три последние двоичные цифры;
б) если число N на 3 не делится, то остаток от деления умножается на 3, переводится в двоичную запись и дописывается в конец числа.
Полученная таким образом запись является двоичной записью искомого числа R.
3. Результат переводится в десятичную систему и выводится на экран.
Например, для исходного числа 12 = 11002 результатом является число 11001002 = 100, а для исходного числа 4 = 1002 результатом является число 100112 = 19.
Укажите минимальное число N, после обработки которого с помощью этого алгоритма получается число R, не меньшее чем 76.
На рисунке справа схема дорог N-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах).
Номер пункта
1
2
3
4
5
6
7
Номер пункта
1
45
10
2
45
40
55
3
15
60
4
10
40
20
35
5
15
55
6
55
60
20
55
45
7
35
45
Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова длина дороги из пункта Г в пункт Е. В ответе запишите целое число – так, как оно указано в таблице.
Назовём маской числа последовательность цифр, в которой также могут встречаться следующие символы:
– символ «?» означает ровно одну произвольную цифру;
– символ «*» означает любую последовательность цифр произвольной длины; в том числе «*» может задавать и пустую последовательность.
Например, маске 123*4?5 соответствуют числа 123405 и 12300405.
Среди натуральных чисел, не превышающих 108, найдите все числа, соответствующие маске 1234*54, делящиеся на 21 без остатка.
В ответе запишите в первом столбце таблицы все найденные числа в порядке возрастания, а во втором столбце – соответствующие им результаты деления этих чисел на 21.
На рисунке схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о протяжённости каждой из этих дорог (в километрах).
Номер пункта
1
2
3
4
5
6
7
Номер пункта
1
8
21
2
8
5
30
3
13
53
4
5
13
3
5
53
2
39
6
30
3
2
7
21
39
Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова сумма протяжённостей дорог из пункта F в пункт B и из пункта E в пункт C.
Задание выполняется с использованием прилагаемых к заданию файлов.
Текст комедии А.С. Грибоедова «Горе от ума» представлен в файлах различных форматов. Откройте один из файлов и определите, сколько раз, не считая сносок, встречается в тексте слово «батюшка» или «Батюшка». Другие формы слова «батюшка», такие как «батюшке», «батюшки» и т.д., учитывать не следует.