Задание выполняется с использованием прилагаемых файлов.
Откройте файл электронной таблицы, содержащей в каждой строке пять натуральных чисел. Определите количество строк таблицы, содержащих числа, для которых выполнены оба условия:
– в строке все числа различны;
– утроенная сумма минимального и максимального чисел строки не меньше, чем удвоенная сумма трёх её оставшихся чисел.
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня либо увеличить количество камней в куче в три раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда количество камней в куче становится не менее 58.
Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, состоящую из 58 или более камней.
В начальный момент в куче было S камней; 1 ≤ S≤ 57.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.
Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.
Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует две команды: Вперёд n (где n – целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова; Направо m (где m – целое число), вызывающая изменение направления движения на m градусов по часовой стрелке.
Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз (где k – целое число).
Черепахе был дан для исполнения следующий алгоритм:
Определите, сколько точек с целочисленными координатами будут находиться внутри области, которая ограничена линией, заданной алгоритмом. Точки на линии учитывать не следует.
Задание выполняется с использованием прилагаемых файлов.
Cпомощью текстового редактора определите, сколько раз, не считая сносок, встречается сочетание букв «час» или «Час» только в составе других слов, но не как отдельное слово, в тексте повести А.И. Куприна «Поединок». В ответе укажите только число.
Задание выполняется с использованием прилагаемых файлов.
Откройте файл электронной таблицы, содержащей в каждой строке пять натуральных чисел. Определите количество строк таблицы, содержащих числа, для которых выполнены оба условия:
– в строке все числа различны;
– утроенное произведение минимального и максимального чисел строки не больше, чем удвоенное произведение трёх её оставшихся чисел.
Задание выполняется с использованием прилагаемых файлов.
Откройте файл электронной таблицы, содержащей в каждой строке пять натуральных чисел. Определите количество строк таблицы, содержащих числа, для которых выполнены оба условия:
– в строке все числа различны;
– удвоенная сумма максимального и минимального чисел строки не больше суммы оставшихся трёх её чисел.
По каналу связи передаются сообщения, содержащие только четыре буквы: А, Б, В, Г. Для передачи используется двоичный код, удовлетворяющий условию Фано. Для букв А, Б, В используются такие кодовые слова: А – 1010; Б – 1100; В – 0.
Укажите кратчайшее кодовое слово для буквы Г, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наибольшим числовым значением.
Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
1. Строится двоичная запись числа N.
2. Далее эта запись обрабатывается по следующему правилу:
а) если число N делится на 3, то к этой записи дописываются три последние двоичные цифры;
б) если число N на 3 не делится, то остаток от деления умножается на 3, переводится в двоичную запись и дописывается в конец числа.
Полученная таким образом запись является двоичной записью искомого числа R.
3. Результат переводится в десятичную систему и выводится на экран.
Например, для исходного числа 12 = 11002 результатом является число 11001002 = 100, а для исходного числа 4 = 1002 результатом является число 100112 = 19.
Укажите минимальное число N, после обработки которого с помощью этого алгоритма получается число R, не меньшее чем 76.
На рисунке справа схема дорог N-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах).
Номер пункта
1
2
3
4
5
6
7
Номер пункта
1
45
10
2
45
40
55
3
15
60
4
10
40
20
35
5
15
55
6
55
60
20
55
45
7
35
45
Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова длина дороги из пункта Г в пункт Е. В ответе запишите целое число – так, как оно указано в таблице.