OpenFIPI 2.0

Все задания взяты из открытого банка заданий ФИПИ

На текущий момент есть ответы в 1962 заданиях из 3117 (актуальных)

Показаны задания 371 - 380 из 1,565
# Номер Актуальное Ответ Обновлено
2285C9 18 True True 04.05.2023 10:23:09

Задание выполняется с использованием прилагаемых
файлов.

Квадрат разлинован на N × N клеток (1 < N < 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз
в соседнюю нижнюю. Квадрат ограничен внешними стенами. Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может.

Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота.

Определите максимальную и минимальную денежные суммы, которые может собрать Робот, пройдя из левой верхней клетки
в правую нижнюю. В ответе укажите два числа – сначала максимальную сумму, затем минимальную.

 

Исходные данные представляют собой электронную таблицу размером N × N, каждая ячейка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщёнными линиями.

Пример входных данных

1

8

8

4

10

1

1

3

1

3

12

2

2

3

5

6

 

 

F7EDCC 18 True False 04.05.2023 10:22:51

Задание выполняется с использованием прилагаемых
файлов.

Квадрат разлинован на N × N клеток (1 < N < 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз
в соседнюю нижнюю. Квадрат ограничен внешними стенами. Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может.

Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота.

Определите максимальную и минимальную денежные суммы, которые может собрать Робот, пройдя из левой верхней клетки
в правую нижнюю. В ответе укажите два числа – сначала максимальную сумму, затем минимальную.

 

Исходные данные представляют собой электронную таблицу размером N × N, каждая ячейка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщёнными линиями.

Пример входных данных

1

8

8

4

10

1

1

3

1

3

12

2

2

3

5

6

 

 

A3D6AA 12 True True 04.05.2023 10:22:24

Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

А) заменить (v, w).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды

заменить (111, 27)

преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды

заменить (v, w)

не меняет эту строку.

Б) нашлось (v).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

Цикл

ПОКА  условие 

последовательность команд

КОНЕЦ ПОКА

выполняется, пока условие истинно.

В конструкции

ЕСЛИ  условие

ТО команда1

ИНАЧЕ команда2

КОНЕЦ ЕСЛИ

выполняется команда1 (если условие истинно) или команда2 (если условие ложно).

Дана программа для Редактора:

НАЧАЛО

ПОКА нашлось (25) ИЛИ нашлось (355) ИЛИ нашлось (555)

    ЕСЛИ нашлось (25)

      ТО заменить (25, 5)

    КОНЕЦ ЕСЛИ

    ЕСЛИ нашлось (355)

       ТО заменить (355, 52)

    КОНЕЦ ЕСЛИ

    ЕСЛИ нашлось (555)

       ТО заменить (555, 3)

    КОНЕЦ ЕСЛИ

КОНЕЦ ПОКА

КОНЕЦ

 

На вход приведённой выше программе поступает строка, начинающаяся с цифры «3», а затем содержащая n цифр «5» (n > 3).

Определите наименьшее значение n, при котором в строке, получившейся в результате выполнения программы, останутся только цифры «5».

1E71A4 15 True True 04.05.2023 10:21:58

Для какого наименьшего целого неотрицательного числа А логическое выражение

(x≥12) \/ (3x < y) \/ (xy <A)

тождественно истинно (т.е. принимает значение 1) при любых целых неотрицательных x и y?

8F2A53 23 True True 04.05.2023 10:20:20

Исполнитель преобразует число на экране.

У исполнителя есть три команды, которые обозначены латинскими буквами:

A. Прибавить 1

B. Прибавить 2

C. Умножить на 2

Программа для исполнителя – это последовательность команд.

Сколько существует программ, для которых при исходном числе 3 результатом является число 18, при этом траектория вычислений содержит число 8 и не содержит 13?

Траектория вычислений программы – это последовательность результатов выполнения всех команд программы. Например, для программы CBA при исходном числе 7 траектория будет состоять из чисел 14, 16, 17.

5637DD 11 True True 04.05.2023 10:19:27

При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 23 символов.
В качестве символов используются буквы из 12-символьного алфавита. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используется посимвольное кодирование паролей, все символы кодируются одинаковым и минимально возможным количеством бит. Кроме собственно пароля в системе хранятся дополнительные сведения о каждом пользователе, для чего выделено целое число байт; это число одно и то же для всех пользователей.

Для хранения сведений о 297 пользователях потребовалось 13 068 байт. Сколько байт выделено для хранения дополнительных сведений об одном пользователе?

В ответе запишите только целое число – количество байт.

 

49E2DA 18 True False 04.05.2023 10:19:02

Задание выполняется с использованием прилагаемых
файлов.

Квадрат разлинован на N × N клеток (1 < N < 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз
в соседнюю нижнюю. Квадрат ограничен внешними стенами. Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может.

Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота.

Определите максимальную и минимальную денежные суммы, которые может собрать Робот, пройдя из левой верхней клетки
в правую нижнюю. В ответе укажите два числа – сначала максимальную сумму, затем минимальную.

 

Исходные данные представляют собой электронную таблицу размером N × N, каждая ячейка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщёнными линиями.

Пример входных данных

1

8

8

4

10

1

1

3

1

3

12

2

2

3

5

6

 

 

3E352F 22 True True 04.05.2023 10:18:43

 undefined Задание выполняется с использованием прилагаемых файлов.

 

В файле содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно.

Информация о процессах представлена в файле в виде таблицы. В первом столбце таблицы указан идентификатор процесса (ID), во втором столбце таблицы – время его выполнения в миллисекундах, в третьем столбце перечислены
с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.

Типовой пример организации данных в файле:

ID процесса B

Время выполнения процесса B (мс)

ID процесса(-ов) A

1

4

0

2

3

0

3

1

1; 2

4

7

3

 

Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.

 

Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемого файла.

ACD12F 15 True True 04.05.2023 10:18:18

Обозначим через m & n поразрядную конъюнкцию неотрицательных целых чисел m и n. Так, например,
14 & 5 = 11102 & 01012 = 01002 = 4.

 

Для какого наименьшего неотрицательного целого числа А формула

 

((x & 42 ≠ 0) /\ (x & 34 = 0)) → ¬ (x & А = 0)

 

тождественно истинна (т.е. принимает значение 1) при любом неотрицательном целом значении переменной х?

7C192E 16 True True 04.05.2023 10:17:49

Алгоритм вычисления значения функции F(n), где n  натуральное число, задан следующими соотношениями:

F(n) = n при n >= 2025;

F(n) = n + 3 + F(n + 3), если n < 2025.

Чему равно значение выражения F(23)  F(21)?