Задание выполняется с использованием прилагаемых файлов.
При онлайн-покупке билета на концерт известно, какие места в зале уже заняты. Необходимо купить два билета на такие соседние места в одном ряду, чтобы перед ними все кресла с такими же номерами были свободны, а ряд находился как можно дальше от сцены. Если в этом ряду таких пар мест несколько, найдите пару с наибольшими номерами. В ответе запишите два целых числа: искомый номер ряда и наибольший номер места в найденной паре. Нумерация рядов и мест ведётся с 1. Гарантируется, что хотя бы одна такая пара в зале есть.
Входные данные
В первой строке входного файла находятся три числа: N – количество занятых мест в зале (целое положительное число, не превышающее 10 000), M – количество рядов (целое положительное число, не превышающее 100 000) и K – количество мест в каждом ряду (целое положительное число, не превышающее 100 000). В следующих N строках находятся пары натуральных чисел: номер ряда и номер места занятого кресла соответственно (первое число не превышает значения M, а второе – K).
Выходные данные
Два целых положительных числа: наибольший номер ряда и наибольший номер места в найденной паре кресел.
Типовой пример организации данных во входном файле
7 7 8
1 1
6 6
5 5
6 7
4 4
2 2
3 3
При таких исходных данных ответом является пара чисел 5 и 8. Условию задачи удовлетворяют места 7 и 8 в ряду 5: перед креслами 7 и 8 нет занятых мест и это последняя из двух возможных пар в этом ряду. В рядах 6 и 7 искомую пару найти нельзя.
Типовой пример имеет иллюстративный характер.Для выполнения задания используйте данные из прилагаемого файла.
Задание выполняется с использованием прилагаемых файлов.
В кондитерской есть Nкруглых форм для коржей. Специализация кондитерской – многоярусные торты, в которых диаметр каждого верхнего коржа меньше диаметра предыдущего. Один корж можно поместить на другой, если его диаметр хотя бы на 4 единицы меньше диаметра другого коржа. Определите наибольшее количество коржей, которое можно использовать для создания многоярусного торта, и максимально возможный диаметр самого маленького коржа.
Входные данные
В первой строке входного файла находится число N – количество форм для коржей в кондитерской (натуральное число, не превышающее 10 000). В следующих N строках находятся значения диаметров форм для коржей (все числа натуральные, не превышающие 10 000), каждое – в отдельной строке. Диаметр формы равен диаметру коржа, который выпекается в этой в форме.
Запишите в ответе два целых числа: сначала наибольшее количество коржей, которое можно использовать для создания одного многоярусного торта, затем – максимально возможный диаметр самого маленького коржа в таком торте.
Типовой пример организации данных во входном файле
5
43
40
32
40
30
Пример входного файла приведён для пяти коржей и случая, когда минимальная допустимая разница между диаметрами коржей, подходящих для изготовления многоярусного торта, составляет 3 единицы.
При таких исходных данных условию задачи удовлетворяют наборы коржей с диаметрами 30, 40 и 43 или 32, 40 и 43 соответственно, т.е. количество коржей равно 3, а максимально возможный диаметр самого маленького коржа равен 32.
Типовой пример имеет иллюстративный характер.Для выполнения задания используйте данные из прилагаемых файлов.
Задание выполняется с использованием прилагаемых файлов.
В файле содержится последовательность целых чисел. Её элементы могут принимать целые значения от –100 000 до 100 000 включительно. Определите количество пар последовательности, в которых сумма элементов меньше минимального положительного элемента последовательности, кратного 110. Гарантируется, что такой элемент в последовательности есть. В ответе запишите количество найденных пар, затем абсолютное значение максимальной из сумм элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.
В терминологии сетей TCP/IP маской сети называют двоичное число, которое показывает, какая часть IP-адреса узла сети относится к адресу сети, а какая – к адресу узла в этой сети. Адрес сети получается в результате применения поразрядной конъюнкции к заданному адресу узла и маске сети.
Сеть задана IP-адресом 172.16.168.0 и маской сети 255.255.248.0.
Сколько в этой сети IP-адресов, для которых количество единиц в двоичной записи IP-адреса не кратно 3?
У исполнителя есть две команды, которые обозначены латинскими буквами:
A. Вычти 1
B. Найди целую часть от деления на 2
Программа для исполнителя –– это последовательность команд.
Сколько существует программ, для которых при исходном числе 32 результатом является число 1 и при этом траектория вычислений содержит число 10?
Траектория вычислений программы –– это последовательность результатов выполнения всех команд программы. Например, для программы ABBпри исходном числе 10 траектория состоит из чисел 9, 4, 2.
Задание выполняется с использованием прилагаемых файлов.
В файле содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Приостановка выполнения процесса не допускается. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы A и B могут выполняться только последовательно.
Информация о процессах представлена в файле в виде таблицы. В первом столбце таблицы указан идентификатор процесса (ID), во втором столбце таблицы – время его выполнения в миллисекундах, в третьем столбце перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс независимый, то в таблице указано значение 0.
Типовой пример организации данных в файле
ID процесса B
Время выполнения процесса B (мс)
ID процесса(-ов) A
101
4
0
102
3
0
103
1
101; 102
104
7
103
Определите максимальную продолжительность отрезка времени (в мс), в течение которого возможно одновременное выполнение пяти процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.
Типовой пример имеет иллюстративный характер.Для выполнения задания используйте данные из прилагаемого файла.
Задание выполняется с использованием прилагаемых файлов.
В файле содержится последовательность натуральных чисел. Её элементы могут принимать целые значения от 1 до 100 000 включительно. Определите количество пар последовательности, в которых остаток от деления хотя бы одного из элементов на 16 равен минимальному элементу последовательности. В ответе запишите количество найденных пар, затем максимальную из сумм элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.
На числовой прямой даны два отрезка: P = [17; 58] и Q = [29; 80]. Укажите наименьшую возможную длину такого отрезка A, для которого логическое выражение
(x ∈ P) → (((x ∈ Q) /\ ¬(x ∈ A)) → ¬(x ∈ P))
истинно (т.е. принимает значение 1) при любом значении переменной х.