По каналу связи передаются шифрованные сообщения, содержащие только десять букв: А, Б, Е, И, К, Л, Р, С, Т, У; для передачи используется неравномерный двоичный код. Для кодирования букв используются кодовые слова.
Буква
Кодовое слово
Буква
Кодовое слово
А
00
Л
Б
1100
Р
1010
Е
010
С
1110
И
011
Т
1011
К
1111
У
100
Укажите кратчайшее кодовое слово для буквы Л, при котором код удовлетворяет условию Фано. Если таких кодов несколько, укажите код с наименьшим числовым значением.
Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
Миша заполнял таблицу истинности логической функции F
(w → ¬(z→ x)) \/ y,
но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.
F
1
0
0
1
0
0
0
0
Определите, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т.д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Функция F задана выражением ¬x\/y, зависящим от двух переменных, а фрагмент таблицы имеет следующий вид.
F
0
1
0
В этом случае первому столбцу соответствует переменная y, а второму столбцу – переменная x. В ответе следует написать: yx.
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
1. Строится двоичная запись числа N.
2. Далее эта запись обрабатывается по следующему правилу:
а) если число чётное, то к двоичной записи числа слева дописывается 10;
б) если число нечётное, то к двоичной записи числа слева дописывается 1 и справа дописывается 01.
Полученная таким образом запись является двоичной записью искомого числа R.
Например, для исходного числа 410 = 1002 результатом является число 2010 = 101002, а для исходного числа 510 = 1012 это число 1101012 = 5310.
Укажите минимальное число N, после обработки которого с помощью этого алгоритма получается число R, большее чем 516. В ответе запишите это число в десятичной системе счисления.
Прибор автоматической фиксации нарушений правил дорожного движения делает цветные фотографии размером 800×600 пикселей, используя палитру из 1024 цветов. Снимки сохраняются в памяти камеры, группируются в пакеты по несколько штук, а затем передаются в центр обработки информации со скоростью передачи данных 1 138 688 бит/с. Каково максимально возможное число снимков в одном пакете, если на передачу одного пакета отводится не более 220 секунд?
Задание выполняется с использованием прилагаемых файлов.
Откройте файл электронной таблицы, содержащей в каждой строке четыре натуральных числа. Определите количество строк таблицы, содержащих числа, для которых выполнены оба условия:
– наибольшее из четырёх чисел меньше суммы трёх других;
– среди четырёх чисел есть только одна пара равных чисел.
Миша заполнял таблицу истинности логической функции F
¬(x → w) \/ (y → z) \/ ¬y,
но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.
F
1
0
0
0
1
0
0
0
Определите, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т.д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Функция F задана выражением ¬x \/ y, зависящим от двух переменных, а фрагмент таблицы имеет следующий вид.
F
0
1
0
В этом случае первому столбцу соответствует переменная y, а второму столбцу –– переменная x. В ответе следует написать: yx.
На рисунке схема дорог N-ского района изображена в виде графа, в таблице содержатся сведения о протяжённости каждой из этих дорог (в километрах).
Номер пункта
1
2
3
4
5
6
7
Номер пункта
1
30
8
21
2
5
53
2
3
30
3
4
8
1
13
5
5
1
39
6
21
53
39
7
2
3
13
Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова сумма протяжённостей дорог из пункта G в пункт B и из пункта C в пункт A.
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
1. Строится двоичная запись числа N.
2. Далее эта запись обрабатывается по следующему правилу:
а) если сумма цифр в двоичной записи числа чётная, то к этой записи справа дописывается 0, а затем два левых разряда заменяются на 10;
б) если сумма цифр в двоичной записи числа нечётная, то к этой записи справа дописывается 1, а затем два левых разряда заменяются на 11.
Полученная таким образом запись является двоичной записью искомого числа R.
3. Результат переводится в десятичную систему и выводится на экран.
Например, для исходного числа 610 = 1102 результатом является число 10002 = 810, а для исходного числа 410 = 1002это число 11012 = 1310.
Укажите минимальное число N, после обработки которого с помощью этого алгоритма получается число R, большее 50. В ответе запишите это число в десятичной системе счисления.
Прибор автоматической фиксации нарушений правил дорожного движения делает цветные фотографии размером 1024×768 пикселей, используя палитру из 4096 цветов. Снимки сохраняются в памяти камеры, группируются в пакеты по несколько штук, а затем передаются в центр обработки информации со скоростью передачи данных 1 310 720 бит/с. Каково максимально возможное количество снимков в одном пакете, если на передачу одного пакета отводится не более 300 секунд?
На рисунке схема дорог N-ского района изображена в виде графа, в таблице содержатся сведения о протяжённости каждой из этих дорог (в километрах).
Номер пункта
1
2
3
4
5
6
7
8
Номер пункта
1
8
1
3
2
8
74
3
13
30
4
13
53
5
5
74
2
21
6
1
2
39
7
3
30
53
8
5
21
39
Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова сумма протяжённостей дорог из пункта A в пункт C и из пункта B в пункт H.