При регистрации в компьютерной системе каждому объекту присваивается идентификатор, состоящий из 268 символов и содержащий только десятичные цифры и символы из 2000-символьного специального алфавита. В базе данных для хранения каждого идентификатора отведено одинаковое и минимально возможное целое число байт. При этом используется посимвольное кодирование идентификаторов, все символы кодируются одинаковым и минимально возможным количеством бит.
Определите объём памяти (в Кбайт), необходимый для хранения 4096 идентификаторов. В ответе запишите только целое число – количество Кбайт.
При регистрации в компьютерной системе каждому объекту присваивается идентификатор, состоящий из 250 символов и содержащий только десятичные цифры и символы из 1650-символьного специального алфавита. В базе данных для хранения каждого идентификатора отведено одинаковое и минимально возможное целое число байт. При этом используется посимвольное кодирование идентификаторов, все символы кодируются одинаковым и минимально возможным количеством бит.
Определите объём памяти (в Кбайт), необходимый для хранения 65 536 идентификаторов. В ответе запишите только целое число – количество Кбайт.
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или три камня либо увеличить количество камней в куче в два раза. У каждого игрока есть неограниченное количество камней, чтобы делать ходы.
Игра завершается в тот момент, когда количество камней в куче становится не менее 443.
Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу из 443 камней или больше.
В начальный момент в куче было S камней; 1 ≤ S≤ 442.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.
Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.
При регистрации в компьютерной системе каждому объекту присваивается идентификатор, состоящий из 258 символов и содержащий только десятичные цифры и символы из 1800-символьного специального алфавита. В базе данных для хранения каждого идентификатора отведено одинаковое и минимально возможное целое число байт. При этом используется посимвольное кодирование идентификаторов, все символы кодируются одинаковым и минимально возможным количеством бит.
Определите объём памяти (в Кбайт), необходимый для хранения 16 384 идентификаторов. В ответе запишите только целое число – количество Кбайт.
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
1. Строится двоичная запись числа N.
2. Далее эта запись обрабатывается по следующему правилу:
а) если сумма цифр в двоичной записи числа чётная, то к этой записи справа дописывается 0, а затем два левых разряда заменяются на 10;
б) если сумма цифр в двоичной записи числа нечётная, то к этой записи справа дописывается 1, а затем два левых разряда заменяются на 11.
Полученная таким образом запись является двоичной записью искомого числа R.
Например, для исходного числа 610 = 1102 результатом является число 10002 = 810, а для исходного числа 410 = 1002 результатом является число 11012 = 1310.
Укажите минимальное число N, после обработки которого с помощью этого алгоритма получается число R, большее 40. В ответе запишите это число в десятичной системе счисления.
По каналу связи передаются сообщения, содержащие только буквы из набора: Г, Д, К, С, О, Р. Для передачи используется двоичный код, удовлетворяющий условию Фано. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Кодовые слова для некоторых букв известны: С – 0, К – 1011. Для четырёх оставшихся букв Г, Д, О и Р кодовые слова неизвестны. Какое количество двоичных знаков потребуется для кодирования слова КОСОГОР, если известно, что оно закодировано минимально возможным количеством двоичных знаков?
По каналу связи передаются сообщения, содержащие только буквы из набора: А, З, К, Л, Ч. Для передачи используется двоичный код, удовлетворяющий условию Фано. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Кодовые слова для некоторых букв известны: Ч – 1, Л – 011. Для трёх оставшихся букв А, З и К кодовые слова неизвестны. Какое количество двоичных знаков потребуется для кодирования слова КАЧАЛКА, если известно, что оно закодировано минимально возможным количеством двоичных знаков?