Напишите программу, которая перебирает целые числа, бо́льшие 600 000, в порядке возрастания и ищет среди них такие, у которых есть натуральный делитель, оканчивающийся на цифру 8 и не равный ни самому числу, ни числу 8. В ответе запишите в первом столбце таблицы первые пять найденных чисел в порядке возрастания, а во втором столбце – наименьший делитель для каждого из них, оканчивающийся цифрой 8, не равный ни самому числу, ни числу 8.
Задание выполняется с использованием прилагаемых файлов.
При онлайн-покупке билета на концерт известно, какие места в зале уже заняты. Необходимо купить два билета на такие соседние места в одном ряду, чтобы перед ними все кресла с такими же номерами были свободны, а ряд находился как можно дальше от сцены. Если в этом ряду таких пар мест несколько, найдите пару с наименьшими номерами. В ответе запишите два целых числа: искомый номер ряда и наименьший номер места в найденной паре. Нумерация рядов и мест ведётся с 1. Гарантируется, что хотя бы одна такая пара в зале есть.
Входные данные
В первой строке входного файла находятся три числа: N – количество занятых мест в зале (целое положительное число, не превышающее 10 000), M – количество рядов (целое положительное число, не превышающее 100 000) и K – количество мест в каждом ряду (целое положительное число, не превышающее 100 000). В следующих N строках находятся пары натуральных чисел: номер ряда и номер места занятого кресла соответственно (первое число не превышает значения M, а второе – K).
Выходные данные
Два целых положительных числа: наибольший номер ряда и наименьший номер места в найденной паре кресел.
Типовой пример организации данных во входном файле
7 7 8
1 1
6 6
5 5
6 7
4 4
2 2
3 3
При таких исходных данных ответом является пара чисел 5 и 6. Условию задачи удовлетворяют места 6 и 7 в ряду 5: перед креслами 6 и 7 нет занятых мест и это первая из двух возможных пар в этом ряду. В рядах 6 и 7 искомую пару найти нельзя.
Типовой пример имеет иллюстративный характер.Для выполнения задания используйте данные из прилагаемого файла.
Пусть R – сумма различных натуральных делителей целого числа, не считая единицы и самого числа.
Напишите программу, которая перебирает целые числа, бо́льшие 500 000, в порядке возрастания и ищет среди них такие, для которых R оканчивается на цифру 1. В ответе запишите в первом столбце таблицы первые пять найденных чисел в порядке возрастания, а во втором столбце – соответствующее значение Rдля каждого из них.
Пусть M – сумма минимального и максимального натуральных делителей целого числа, не считая единицы и самого числа. Если таких делителей у числа нет, то считаем значение Mравным нулю.
Напишите программу, которая перебирает целые числа, бо́льшие 700 000, в порядке возрастания и ищет среди них такие, для которых M оканчивается на 4. В ответе запишите в первом столбце таблицы первые пять найденных чисел в порядке возрастания, а во втором столбце – соответствующие им значения M.
Пусть M – сумма минимального и максимального натуральных делителей целого числа, не считая единицы и самого числа. Если таких делителей у числа нет, то считаем значение Mравным нулю.
Напишите программу, которая перебирает целые числа, бо́льшие 800 000, в порядке возрастания и ищет среди них такие, для которых M оканчивается на 4. В ответе запишите в первом столбце таблицы первые пять найденных чисел в порядке возрастания, а во втором столбце – соответствующие им значения M.
Задание выполняется с использованием прилагаемых файлов.
При онлайн-покупке билета на концерт известно, какие места в зале уже заняты. Необходимо купить два билета на такие соседние места в одном ряду, чтобы перед ними все кресла с такими же номерами были свободны, а ряд находился как можно дальше от сцены. Если в этом ряду таких пар мест несколько, найдите пару с наибольшими номерами. В ответе запишите два целых числа: искомый номер ряда и наибольший номер места в найденной паре. Нумерация рядов и мест ведётся с 1. Гарантируется, что хотя бы одна такая пара в зале есть.
Входные данные
В первой строке входного файла находятся три числа: N – количество занятых мест в зале (целое положительное число, не превышающее 10 000), M – количество рядов (целое положительное число, не превышающее 100 000) и K – количество мест в каждом ряду (целое положительное число, не превышающее 100 000). В следующих N строках находятся пары натуральных чисел: номер ряда и номер места занятого кресла соответственно (первое число не превышает значения M, а второе – K).
Выходные данные
Два целых положительных числа: наибольший номер ряда и наибольший номер места в найденной паре кресел.
Типовой пример организации данных во входном файле
7 7 8
1 1
6 6
5 5
6 7
4 4
2 2
3 3
При таких исходных данных ответом является пара чисел 5 и 8. Условию задачи удовлетворяют места 7 и 8 в ряду 5: перед креслами 7 и 8 нет занятых мест и это последняя из двух возможных пар в этом ряду. В рядах 6 и 7 искомую пару найти нельзя.
Типовой пример имеет иллюстративный характер.Для выполнения задания используйте данные из прилагаемого файла.
Задание выполняется с использованием прилагаемых файлов.
В кондитерской есть Nкруглых форм для коржей. Специализация кондитерской – многоярусные торты, в которых диаметр каждого верхнего коржа меньше диаметра предыдущего. Один корж можно поместить на другой, если его диаметр хотя бы на 4 единицы меньше диаметра другого коржа. Определите наибольшее количество коржей, которое можно использовать для создания многоярусного торта, и максимально возможный диаметр самого маленького коржа.
Входные данные
В первой строке входного файла находится число N – количество форм для коржей в кондитерской (натуральное число, не превышающее 10 000). В следующих N строках находятся значения диаметров форм для коржей (все числа натуральные, не превышающие 10 000), каждое – в отдельной строке. Диаметр формы равен диаметру коржа, который выпекается в этой в форме.
Запишите в ответе два целых числа: сначала наибольшее количество коржей, которое можно использовать для создания одного многоярусного торта, затем – максимально возможный диаметр самого маленького коржа в таком торте.
Типовой пример организации данных во входном файле
5
43
40
32
40
30
Пример входного файла приведён для пяти коржей и случая, когда минимальная допустимая разница между диаметрами коржей, подходящих для изготовления многоярусного торта, составляет 3 единицы.
При таких исходных данных условию задачи удовлетворяют наборы коржей с диаметрами 30, 40 и 43 или 32, 40 и 43 соответственно, т.е. количество коржей равно 3, а максимально возможный диаметр самого маленького коржа равен 32.
Типовой пример имеет иллюстративный характер.Для выполнения задания используйте данные из прилагаемых файлов.
Задание выполняется с использованием прилагаемых файлов.
В файле содержится последовательность целых чисел. Её элементы могут принимать целые значения от –100 000 до 100 000 включительно. Определите количество пар последовательности, в которых сумма элементов меньше минимального положительного элемента последовательности, кратного 110. Гарантируется, что такой элемент в последовательности есть. В ответе запишите количество найденных пар, затем абсолютное значение максимальной из сумм элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.