703256
|
25 |
True |
True |
22.10.2024 23:08:05 |
Напишите программу, которая перебирает целые числа, бо́льшие 500 000, в порядке возрастания и ищет среди них такие, у которых есть натуральный делитель, оканчивающийся на цифру 9 и не равный ни самому числу, ни числу 9. В ответе запишите в первом столбце таблицы первые пять найденных чисел в порядке возрастания, а во втором столбце – соответствующий минимальный делитель для каждого числа, оканчивающийся цифрой 9, не равный ни самому числу, ни числу 9.
Количество строк в таблице для ответа избыточно.
|
|
5C8ABE
|
25 |
True |
True |
22.10.2024 23:03:33 |
Пусть R – сумма различных натуральных делителей целого числа, не считая единицы и самого числа.
Напишите программу, которая перебирает целые числа, бо́льшие 500 000, в порядке возрастания и ищет среди них такие, для которых R оканчивается на цифру 9.
В ответе запишите в первом столбце таблицы первые пять найденных чисел в порядке возрастания, а во втором столбце – соответствующие им значения R.
Например, для числа 20 R = 2 + 4 + 5 + 10 = 21.
Количество строк в таблице для ответа избыточно.
|
|
7257B4
|
26 |
True |
True |
22.10.2024 23:03:12 |
|
Задание выполняется с использованием прилагаемых файлов.
|
Во время сессии студенты сдают 4 экзамена, за каждый из которых можно получить от 2 до 5 баллов. Студенты, получившие хотя бы одну «двойку», считаются не сдавшими сессию. Результаты сессии публикуются в виде рейтингового списка, в котором сначала указаны идентификационные номера студентов (ID), сдавших сессию, в порядке убывания среднего балла за сессию, а в случае равенства средних баллов – в порядке возрастания ID. Затем располагаются ID студентов, не сдавших сессию: сначала –получивших одну «двойку», затем – две «двойки», потом ID студентов с тремя «двойками» и, наконец, ID студентов, получивших по 2 балла за каждый из экзаменов. Если студенты имеют одинаковое количество «двоек», то их ID в рейтинге располагаются в порядке возрастания.
Повышенную стипендию получают студенты, занявшие в рейтинговом списке первые 25 % мест, при условии отсутствия у них «двоек». Гарантируется, что без «двоек» сессию сдали не менее 25 % студентов. Найдите ID студента, который занимает последнее место среди студентов с повышенной стипендией, а также ID первого в рейтинговом списке студента, который имеет более двух «двоек».
В ответе запишите два целых положительных числа: сначала ID студента, который занимает последнее место среди студентов с повышенной стипендией, затем ID первого в рейтинговом списке студента, который имеет более двух «двоек».
Входные данные
В первой строке входного файла находится число N, обозначающее количество студентов (целое положительное число, не превышающее 10 000). Каждая из следующих N строк содержит 5 чисел через пробел: ID студента (целое положительное число, не превышающее 100 000) и четыре оценки, полученные им за сессию. Гарантируется, что общее число студентов N кратно 4 и хотя бы один студент имеет более двух «двоек». Во входном файле все ID различны.
Выходные данные
Два натуральных числа: искомые ID студентов в порядке, указанном в условии задачи.
Типовой пример организации данных во входном файле
8
4 4 4 4 4
7 5 5 5 2
10 3 4 4 5
1 4 4 4 3
6 3 5 5 3
2 2 2 2 2
13 2 2 2 3
3 3 3 3 3
При таких исходных данных рейтинговый список ID имеет вид: 4 6 10 1 3 7 13 2. Ответ: 6 13.
Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемого файла.
|
|
|
|
|
967872
|
25 |
True |
True |
22.10.2024 23:02:48 |
Напишите программу, которая перебирает целые числа, бо́льшие 600 000, в порядке возрастания и ищет среди них такие, у которых есть натуральный делитель, оканчивающийся на цифру 8 и не равный ни самому числу, ни числу 8. В ответе запишите в первом столбце таблицы первые пять найденных чисел в порядке возрастания, а во втором столбце – наименьший делитель для каждого из них, оканчивающийся цифрой 8, не равный ни самому числу, ни числу 8.
Количество строк в таблице для ответа избыточно.
|
|
AD6F70
|
26 |
True |
True |
22.10.2024 23:02:04 |
|
Задание выполняется с использованием прилагаемых файлов.
|
При онлайн-покупке билета на концерт известно, какие места в зале уже заняты. Необходимо купить два билета на такие соседние места в одном ряду, чтобы перед ними все кресла с такими же номерами были свободны, а ряд находился как можно дальше от сцены. Если в этом ряду таких пар мест несколько, найдите пару с наименьшими номерами. В ответе запишите два целых числа: искомый номер ряда и наименьший номер места в найденной паре. Нумерация рядов и мест ведётся с 1. Гарантируется, что хотя бы одна такая пара в зале есть.
Входные данные
В первой строке входного файла находятся три числа: N – количество занятых мест в зале (целое положительное число, не превышающее 10 000), M – количество рядов (целое положительное число, не превышающее 100 000) и K – количество мест в каждом ряду (целое положительное число, не превышающее 100 000). В следующих N строках находятся пары натуральных чисел: номер ряда и номер места занятого кресла соответственно (первое число не превышает значения M, а второе – K).
Выходные данные
Два целых положительных числа: наибольший номер ряда и наименьший номер места в найденной паре кресел.
Типовой пример организации данных во входном файле
7 7 8
1 1
6 6
5 5
6 7
4 4
2 2
3 3
При таких исходных данных ответом является пара чисел 5 и 6. Условию задачи удовлетворяют места 6 и 7 в ряду 5: перед креслами 6 и 7 нет занятых мест и это первая из двух возможных пар в этом ряду. В рядах 6 и 7 искомую пару найти нельзя.
Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемого файла.
|
|
|
|
|
F5647E
|
25 |
True |
True |
22.10.2024 23:01:45 |
Пусть R – сумма различных натуральных делителей целого числа, не считая единицы и самого числа.
Напишите программу, которая перебирает целые числа, бо́льшие 500 000, в порядке возрастания и ищет среди них такие, для которых R оканчивается на цифру 1. В ответе запишите в первом столбце таблицы первые пять найденных чисел в порядке возрастания, а во втором столбце – соответствующее значение R для каждого из них.
Например, для числа 20 R = 2 + 4 + 5 + 10 = 21.
Количество строк в таблице для ответа избыточно.
|
|
2FDD04
|
25 |
True |
True |
22.10.2024 23:01:20 |
Пусть M – сумма минимального и максимального натуральных делителей целого числа, не считая единицы и самого числа. Если таких делителей у числа нет, то считаем значение M равным нулю.
Напишите программу, которая перебирает целые числа, бо́льшие 700 000, в порядке возрастания и ищет среди них такие, для которых M оканчивается на 4. В ответе запишите в первом столбце таблицы первые пять найденных чисел в порядке возрастания, а во втором столбце – соответствующие им значения M.
Например, для числа 20 М = 2 + 10 = 12.
Количество строк в таблице для ответа избыточно.
|
|
3F3DF0
|
25 |
True |
True |
22.10.2024 23:00:57 |
Пусть M – сумма минимального и максимального натуральных делителей целого числа, не считая единицы и самого числа. Если таких делителей у числа нет, то считаем значение M равным нулю.
Напишите программу, которая перебирает целые числа, бо́льшие 800 000, в порядке возрастания и ищет среди них такие, для которых M оканчивается на 4. В ответе запишите в первом столбце таблицы первые пять найденных чисел в порядке возрастания, а во втором столбце – соответствующие им значения M.
Например, для числа 20 М = 2 + 10 = 12.
Количество строк в таблице для ответа избыточно.
|
|
6689F3
|
26 |
True |
True |
22.10.2024 23:00:21 |
|
Задание выполняется с использованием прилагаемых файлов.
|
При онлайн-покупке билета на концерт известно, какие места в зале уже заняты. Необходимо купить два билета на такие соседние места в одном ряду, чтобы перед ними все кресла с такими же номерами были свободны, а ряд находился как можно дальше от сцены. Если в этом ряду таких пар мест несколько, найдите пару с наибольшими номерами. В ответе запишите два целых числа: искомый номер ряда и наибольший номер места в найденной паре. Нумерация рядов и мест ведётся с 1. Гарантируется, что хотя бы одна такая пара в зале есть.
Входные данные
В первой строке входного файла находятся три числа: N – количество занятых мест в зале (целое положительное число, не превышающее 10 000), M – количество рядов (целое положительное число, не превышающее 100 000) и K – количество мест в каждом ряду (целое положительное число, не превышающее 100 000). В следующих N строках находятся пары натуральных чисел: номер ряда и номер места занятого кресла соответственно (первое число не превышает значения M, а второе – K).
Выходные данные
Два целых положительных числа: наибольший номер ряда и наибольший номер места в найденной паре кресел.
Типовой пример организации данных во входном файле
7 7 8
1 1
6 6
5 5
6 7
4 4
2 2
3 3
При таких исходных данных ответом является пара чисел 5 и 8. Условию задачи удовлетворяют места 7 и 8 в ряду 5: перед креслами 7 и 8 нет занятых мест и это последняя из двух возможных пар в этом ряду. В рядах 6 и 7 искомую пару найти нельзя.
Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемого файла.
|
|
|
|
|
CBF8FC
|
26 |
True |
True |
22.10.2024 22:59:41 |
|
Задание выполняется с использованием прилагаемых файлов.
|
В кондитерской есть N круглых форм для коржей. Специализация кондитерской – многоярусные торты, в которых диаметр каждого верхнего коржа меньше диаметра предыдущего. Один корж можно поместить на другой, если его диаметр хотя бы на 4 единицы меньше диаметра другого коржа. Определите наибольшее количество коржей, которое можно использовать для создания многоярусного торта, и максимально возможный диаметр самого маленького коржа.
Входные данные
В первой строке входного файла находится число N – количество форм для коржей в кондитерской (натуральное число, не превышающее 10 000). В следующих N строках находятся значения диаметров форм для коржей (все числа натуральные, не превышающие 10 000), каждое – в отдельной строке. Диаметр формы равен диаметру коржа, который выпекается в этой в форме.
Запишите в ответе два целых числа: сначала наибольшее количество коржей, которое можно использовать для создания одного многоярусного торта, затем – максимально возможный диаметр самого маленького коржа в таком торте.
Типовой пример организации данных во входном файле
5
43
40
32
40
30
Пример входного файла приведён для пяти коржей и случая, когда минимальная допустимая разница между диаметрами коржей, подходящих для изготовления многоярусного торта, составляет 3 единицы.
При таких исходных данных условию задачи удовлетворяют наборы коржей с диаметрами 30, 40 и 43 или 32, 40 и 43 соответственно, т.е. количество коржей равно 3, а максимально возможный диаметр самого маленького коржа равен 32.
Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемых файлов.
|
|
|
|
|