Задание выполняется с использованием прилагаемых файлов.
Квадрат разлинован на N× N клеток (1 < N < 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз – в соседнюю нижнюю. Квадрат ограничен внешними стенами. Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может.
Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота.
В «угловых» клетках поля – тех, которые справа и снизу ограничены стенами, Робот не может продолжать движение, поэтому накопленная сумма считается итоговой. Таких конечных клеток на поле может быть несколько, включая правую нижнюю клетку поля. При разных запусках итоговые накопленные суммы могут различаться.
Определите максимальную и минимальную денежные суммы, среди всех возможных итоговых сумм, которые может собрать Робот, пройдя из левой верхней клетки в конечную клетку маршрута. В ответе укажите два числа – сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N× N, каждая ячейка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщёнными линиями.
По каналу связи передаются сообщения, содержащие только восемь букв: А, Б, В, Г, Д, Е, Ж и З. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны:
А
10
Б
011
В
110
Г
1110
Какое наименьшее количество двоичных знаков потребуется для кодирования четырёх оставшихся букв?
В ответе запишите суммарную длину кодовых слов для букв: Д, Е, Ж, З.
Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
Задание выполняется с использованием прилагаемых файлов.
Откройте файл электронной таблицы, содержащей в каждой строке семь натуральных чисел. Определите количество строк таблицы, для чисел которых выполнены оба условия:
– в строке есть одно число, которое повторяется трижды, остальные четыре числа различны;
– среднее арифметическое неповторяющихся чисел строки не меньше повторяющегося числа.
Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует 6 команд: Поднять хвост, означающая переход к перемещению без рисования; Опустить хвост, означающая переход в режим рисования; Вперёд n (где n – целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова; Назад n (где n – целое число), вызывающая передвижение в противоположном голове направлении; Направо m (где m – целое число), вызывающая изменение направления движения на m градусов по часовой стрелке, Налево m (где m – целое число), вызывающая изменение направления движения на m градусов против часовой стрелки.
Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз.
Черепахе был дан для исполнения следующий алгоритм.
Повтори 2 [Вперёд 1 Направо 90 Назад 16 Направо 90]
Определите, сколько точек с целочисленными координатами будут находиться внутри объединения фигур, ограниченного заданными алгоритмом линиями, включая точки на линиях.
Задание выполняется с использованием прилагаемых файлов.
C помощью текстового редактора определите, сколько раз встречается слово «был» или «Был» в тексте повести А.И. Куприна «Поединок». Другие слова, содержащие сочетание букв «был», такие как «забыл» и т. д., учитывать не следует. В ответе укажите только число.
Миша заполнял таблицу истинности логической функции F
(x\/ ¬y)/\ ¬(y≡ z)/\w,
но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.
F
0
0
1
1
0
1
1
1
1
0
1
Определите, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т.д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Функция F задана выражением ¬x\/y, зависящим от двух переменных, а фрагмент таблицы имеет следующий вид.
F
0
1
0
В этом случае первому столбцу соответствует переменнаяy, а второму столбцу – переменнаяx. В ответе следует написать:yx.
По каналу связи передаются сообщения, содержащие только восемь букв: А, Б, В, Г, Д, Е, Ж и З. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны:
А
011
Б
0100
В
10
Г
0101
Какое наименьшее количество двоичных знаков потребуется для кодирования четырёх оставшихся букв?
В ответе запишите суммарную длину кодовых слов для букв: Д, Е, Ж, З.
Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
Сколько секунд потребуется обычному модему, передающему сообщения со скоростью 28 800 бит/с, чтобы передать цветное растровое изображение размером 960 на 540 пикселей, при условии, что цвет каждого пикселя кодируется 4 байтами?
Сколько секунд потребуется обычному модему, передающему сообщения со скоростью 28 800 бит/с, чтобы передать цветное растровое изображение размером 1280 на 720 пикселей, при условии, что цвет каждого пикселя кодируется 4 байтами?