Вася составляет 4-буквенные слова, в которых встречаются только буквы Д, Е, Ж, З, причём буква Д появляется ровно 1 раз. Каждая из других допустимых букв может встречаться в слове любое количество раз или не встречаться совсем. Словом считается любая допустимая последовательность букв, не обязательно осмысленная. Сколько существует таких слов, которые может написать Вася?
Вася составляет 5-буквенные слова, в которых встречаются только буквы А, Б, В, Г, причём буква А появляется ровно 1 раз. Каждая из других допустимых букв может встречаться в слове любое количество раз или не встречаться совсем. Словом считается любая допустимая последовательность букв, не обязательно осмысленная. Сколько существует таких слов, которые может написать Вася?
Два игрока, Паша и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.
Игра завершается в тот момент, когда количество камней в куче становится не менее 28. Если при этом в куче оказалось не более 46 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче было 25 камней и Паша удвоит количество камней в куче, то игра закончится и победителем будет Валя. В начальный момент в куче было S камней, 1 ≤ S ≤ 27.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
Выполните следующие задания.
1. а) При каких значениях числа S Паша может выиграть в один ход?
Укажите все такие значения и соответствующие ходы Паши.
б) У кого из игроков есть выигрышная стратегия при S= 26, 25, 24?
Опишите выигрышные стратегии для этих случаев.
2. У кого из игроков есть выигрышная стратегия при S = 13, 12? Опишите соответствующие выигрышные стратегии.
3. У кого из игроков есть выигрышная стратегия при S = 11?Постройте дерево всех партий, возможных при этой выигрышной стратегии (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход; в узлах – количество камней в позиции.
Логическая функция F задаётся выражением y /\ ¬z /\ (¬x \/ w).
На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна.
Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных w, x,y,z.
Перем. 1
Перем. 2
Перем. 3
Перем. 4
Функция
???
???
???
???
F
1
0
0
0
1
1
0
0
1
1
1
1
0
1
1
В ответе напишите буквы w, x,y,z в том порядке, в котором идут соответствующие им столбцы (сначала –– буква, соответствующая первому столбцу; затем –– буква, соответствующая второму столбцу, и т.д.) Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Если бы функция была задана выражением ¬x \/ y, зависящим от двух переменных: x и y, и был приведён фрагмент её таблицы истинности, содержащий все наборы аргументов, при которых функция F истинна.
Перем. 1
Перем. 2
Функция
???
???
F
0
0
1
1
0
1
1
1
1
Тогда первому столбцу соответствовала бы переменная y, а второму столбцу –– переменная x. В ответе следовало бы написать: yx.
Исполнитель А16 преобразует число, записанное на экране.
У исполнителя есть три команды, которым присвоены номера:
1.Прибавить 1
2.Прибавить 2
3.Умножить на 2
Первая из них увеличивает число на экране на 1, вторая увеличивает его на 2, третья умножает его на 2.
Программа для исполнителя А16 – это последовательность команд.
Сколько существует таких программ, которые исходное число 3 преобразуют в число 14, и при этом траектория вычислений программы содержит число 10?
Траектория вычислений программы – это последовательность результатов выполнения всех команд программы. Например, для программы 132 при исходном числе 7 траектория будет состоять из чисел 8, 16, 18.
Два игрока, Паша и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.
Игра завершается в тот момент, когда количество камней в куче становится не менее 24. Если при этом в куче оказалось не более 38 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче был 21 камень и Паша удвоит количество камней в куче, то игра закончится и победителем будет Валя. В начальный момент в куче было S камней, 1 ≤ S ≤ 23.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
Выполните следующие задания.
1. а) При каких значениях числа S Паша может выиграть в один ход?
Укажите все такие значения и соответствующие ходы Паши.
б) У кого из игроков есть выигрышная стратегия при S= 22, 21, 20?
Опишите выигрышные стратегии для этих случаев.
2. У кого из игроков есть выигрышная стратегия при S = 11, 10? Опишите соответствующие выигрышные стратегии.
3. У кого из игроков есть выигрышная стратегия при S = 9?Постройте дерево всех партий, возможных при этой выигрышной стратегии (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход; в узлах – количество камней в позиции.
Исполнитель В16 преобразует число, записанное на экране.
У исполнителя есть три команды, которым присвоены номера:
1.Прибавить 1
2.Прибавить 2
3.Умножить на 3
Первая из них увеличивает число на экране на 1, вторая увеличивает его на 2, третья умножает его на 3.
Программа для исполнителя В16 – это последовательность команд.
Сколько существует таких программ, которые исходное число 2 преобразуют в число 14, и при этом траектория вычислений программы содержит число 10?
Траектория вычислений программы – это последовательность результатов выполнения всех команд программы. Например, для программы 132 при исходном числе 7 траектория будет состоять из чисел 8, 24, 26.
Два игрока, Паша и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.
Игра завершается в тот момент, когда количество камней в куче становится не менее 38. Если при этом в куче оказалось не более 66 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче было 35 камней и Паша удвоит количество камней в куче, то игра закончится и победителем будет Валя. В начальный момент в куче было S камней, 1 ≤ S ≤ 37.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
Выполните следующие задания.
1. а) При каких значениях числа S Паша может выиграть в один ход?
Укажите все такие значения и соответствующие ходы Паши.
б) У кого из игроков есть выигрышная стратегия при S= 36, 35, 34?
Опишите выигрышные стратегии для этих случаев.
2. У кого из игроков есть выигрышная стратегия при S = 18, 17? Опишите соответствующие выигрышные стратегии.
3. У кого из игроков есть выигрышная стратегия при S = 16?Постройте дерево всех партий, возможных при этой выигрышной стратегии (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход; в узлах – количество камней в позиции.