Квадрат разлинован на N × N клеток (1 < N < 26). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку; по команде вниз – в соседнюю нижнюю. Робот разрушается при попытке выхода за границу квадрата или при попытке пересечения стены клетки. В таблице стены отмечены границами с утолщением.
Перед запуском Робота в каждой клетке квадрата указан бонус, который Робот забирает после посещения клетки. Размер бонуса в каждой клетке – это натуральное число, не превышающее 100. Это правило относится к начальной и конечной клеткам маршрута Робота.
Определите минимальную и максимальную суммы бонусов, которые может собрать Робот, перемещаясь из левой верхней клетки квадрата в его правую нижнюю клетку. В ответе укажите два числа: сначала минимальную сумму, затем максимальную.
Исходные данные представлены в форме электронной таблицы размером N × N, в которой одна ячейка соответствует одной клетке квадрата. Стены, через которые Роботу нельзя проходить, отмечены в электронной таблице границами с утолщением.
Пример входных данных:
1
8
8
4
10
1
1
3
1
3
12
2
2
3
5
6
Для указанных входных данных ответом является пара чисел:
Квадрат разлинован на N × N клеток (1 < N < 26). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку; по команде вниз – в соседнюю нижнюю. Робот разрушается при попытке выхода за границу квадрата или при попытке пересечения стены клетки. В таблице стены отмечены границами с утолщением.
Перед запуском Робота в каждой клетке квадрата указан бонус, который Робот забирает после посещения клетки. Размер бонуса в каждой клетке – это натуральное число, не превышающее 100. Это правило относится к начальной и конечной клеткам маршрута Робота.
Определите минимальную и максимальную суммы бонусов, которые может собрать Робот, перемещаясь из левой верхней клетки квадрата в его правую нижнюю клетку. В ответе укажите два числа: сначала минимальную сумму, затем максимальную.
Исходные данные представлены в форме электронной таблицы размером N × N, в которой одна ячейка соответствует одной клетке квадрата. Стены, через которые Роботу нельзя проходить, отмечены в электронной таблице границами с утолщением.
Пример входных данных:
1
8
8
4
10
1
1
3
1
3
12
2
2
3
5
6
Для указанных входных данных ответом является пара чисел:
Квадрат разлинован на N × N клеток (1 < N < 26). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку; по команде вниз – в соседнюю нижнюю. Робот разрушается при попытке выхода за границу квадрата или при попытке пересечения стены клетки. В таблице стены отмечены границами с утолщением.
Перед запуском Робота в каждой клетке квадрата указан бонус, который Робот забирает после посещения клетки. Размер бонуса в каждой клетке – это натуральное число, не превышающее 100. Это правило относится к начальной и конечной клеткам маршрута Робота.
Определите минимальную и максимальную суммы бонусов, которые может собрать Робот, перемещаясь из левой верхней клетки квадрата в его правую нижнюю клетку. В ответе укажите два числа: сначала минимальную сумму, затем максимальную.
Исходные данные представлены в форме электронной таблицы размером N × N, в которой одна ячейка соответствует одной клетке квадрата. Стены, через которые Роботу нельзя проходить, отмечены в электронной таблице границами с утолщением.
Пример входных данных:
1
8
8
4
10
1
1
3
1
3
12
2
2
3
5
6
Для указанных входных данных ответом является пара чисел:
Квадрат разлинован на N × N клеток (1 < N < 26). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку; по команде вниз – в соседнюю нижнюю. Робот разрушается при попытке выхода за границу квадрата или при попытке пересечения стены клетки. В таблице стены отмечены границами с утолщением.
Перед запуском Робота в каждой клетке квадрата указан бонус, который Робот забирает после посещения клетки. Размер бонуса в каждой клетке – это натуральное число, не превышающее 100. Это правило относится к начальной и конечной клеткам маршрута Робота.
Определите минимальную и максимальную суммы бонусов, которые может собрать Робот, перемещаясь из левой верхней клетки квадрата в его правую нижнюю клетку. В ответе укажите два числа: сначала минимальную сумму, затем максимальную.
Исходные данные представлены в форме электронной таблицы размером N × N, в которой одна ячейка соответствует одной клетке квадрата. Стены, через которые Роботу нельзя проходить, отмечены в электронной таблице границами с утолщением.
Пример входных данных:
1
8
8
4
10
1
1
3
1
3
12
2
2
3
5
6
Для указанных входных данных ответом является пара чисел:
Квадрат разлинован на N × N клеток (1 < N < 26). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку; по команде вниз – в соседнюю нижнюю. Робот разрушается при попытке выхода за границу квадрата или при попытке пересечения стены клетки. В таблице стены отмечены границами с утолщением.
Перед запуском Робота в каждой клетке квадрата указан бонус, который Робот забирает после посещения клетки. Размер бонуса в каждой клетке – это натуральное число, не превышающее 100. Это правило относится к начальной и конечной клеткам маршрута Робота.
Определите минимальную и максимальную суммы бонусов, которые может собрать Робот, перемещаясь из левой верхней клетки квадрата в его правую нижнюю клетку. В ответе укажите два числа: сначала минимальную сумму, затем максимальную.
Исходные данные представлены в форме электронной таблицы размером N × N, в которой одна ячейка соответствует одной клетке квадрата. Стены, через которые Роботу нельзя проходить, отмечены в электронной таблице границами с утолщением.
Пример входных данных:
1
8
8
4
10
1
1
3
1
3
12
2
2
3
5
6
Для указанных входных данных ответом является пара чисел:
Квадрат разлинован на N × N клеток (1 < N < 26). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку; по команде вниз – в соседнюю нижнюю. Робот разрушается при попытке выхода за границу квадрата или при попытке пересечения стены клетки. В таблице стены отмечены границами с утолщением.
Перед запуском Робота в каждой клетке квадрата указан бонус, который Робот забирает после посещения клетки. Размер бонуса в каждой клетке – это натуральное число, не превышающее 100. Это правило относится к начальной и конечной клеткам маршрута Робота.
Определите минимальную и максимальную суммы бонусов, которые может собрать Робот, перемещаясь из левой верхней клетки квадрата в его правую нижнюю клетку. В ответе укажите два числа: сначала минимальную сумму, затем максимальную.
Исходные данные представлены в форме электронной таблицы размером N × N, в которой одна ячейка соответствует одной клетке квадрата. Стены, через которые Роботу нельзя проходить, отмечены в электронной таблице границами с утолщением.
Пример входных данных:
1
8
8
4
10
1
1
3
1
3
12
2
2
3
5
6
Для указанных входных данных ответом является пара чисел:
Музыкальный фрагмент был оцифрован и записан в виде файла без использования сжатия данных. Получившийся файл был передан в город А по каналу связи за 30 секунд. Затем тот же музыкальный фрагмент был оцифрован повторно с разрешением в 2 раза выше и частотой дискретизации в 1,5 раза меньше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б; пропускная способность канала связи с городом Б в 4 раза выше, чем канала связи с городом А. Сколько секунд длилась передача файла в город Б? В ответе запишите только целое число, единицу измерения писать не нужно.
В терминологии сетей TCP/IP маской сети называется двоичное число, определяющее, какая часть IP-адреса узла сети относится к адресу сети, а какая –– к адресу самого узла в этой сети. Обычно маска записывается по тем же правилам, что и IP-адрес, –– в виде четырёх байтов, причём каждый байт записывается в виде десятичного числа. При этом в маске сначала (в старших разрядах) стоят единицы, а затем с некоторого разряда –– нули. Адрес сети получается в результате применения поразрядной конъюнкции к заданному IP-адресу узла и маске.
Например, если IP-адрес узла равен 231.32.255.131, а маска равна 255.255.240.0, то адрес сети равен 231.32.240.0.
Для узла с IP-адресом 111.81.176.127 адрес сети равен 111.81.160.0. Чему равен третий слева байт маски? Ответ запишите в виде десятичного числа.
Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 64×64 пикселов при условии, что в изображении могут использоваться 256 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно.
В терминологии сетей TCP/IP маской сети называется двоичное число, определяющее, какая часть IP-адреса узла сети относится к адресу сети, а какая –– к адресу самого узла в этой сети. Обычно маска записывается по тем же правилам, что и IP-адрес, –– в виде четырёх байтов, причём каждый байт записывается в виде десятичного числа. При этом в маске сначала (в старших разрядах) стоят единицы, а затем с некоторого разряда –– нули. Адрес сети получается в результате применения поразрядной конъюнкции к заданному IP-адресу узла и маске.
Например, если IP-адрес узла равен 231.32.255.131, а маска равна 255.255.240.0, то адрес сети равен 231.32.240.0.
Для узла с IP-адресом 208.240.84.112 адрес сети равен 208.240.80.0. Чему равно наименьшее возможное значение третьего слева байта маски? Ответ запишите в виде десятичного числа.