По каналу связи передаются сообщения, содержащие только буквы из набора: А, Б, К, Р, Н. Для передачи используется двоичный код, удовлетворяющий условию Фано. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Кодовые слова для некоторых букв известны: К – 01, Р – 001. Для трёх оставшихся букв Б, Н и А кодовые слова неизвестны. Какое количество двоичных знаков потребуется для кодирования слова БАРАБАН, если известно, что оно закодировано минимально возможным количеством двоичных знаков?
Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах vиwобозначают цепочки цифр.
А) заменить (v,w).
Эта команда заменяет в строке первое слева вхождение цепочки vна цепочку w. Например, выполнение команды
заменить (111, 27)
преобразует строку 05111150 в строку 0527150.
Если в строке нет вхождений цепочки v, то выполнение команды
заменить (v,w)
не меняет эту строку.
Б) нашлось (v).
Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.
Цикл
ПОКА условие
последовательность команд
КОНЕЦ ПОКА
выполняется, пока условие истинно.
В конструкции
ЕСЛИ условие
ТО команда1
ИНАЧЕ команда2
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно) или команда2 (если условие ложно).
Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 84 идущих подряд цифр 8? В ответе запишите полученную строку.
На рисунке схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о протяжённости каждой из этих дорог (в километрах).
Номер пункта
1
2
3
4
5
6
7
Номер пункта
1
5
21
2
13
3
30
3
13
53
2
4
5
3
8
5
21
30
53
6
2
39
7
8
39
Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова сумма протяжённостей дорог из пункта D в пункт B и из пункта A в пункт E.
Миша заполнял таблицу истинности логической функции F
¬(x→ w) \/ (y≡z) \/ y,
но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.
F
1
0
0
0
1
0
0
0
Определите, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т.д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Функция Fзадана выражением ¬x\/y, зависящим от двух переменных, а фрагмент таблицы имеет следующий вид.
F
0
1
0
В этом случае первому столбцу соответствует переменная y, а второму столбцу – переменная x. В ответе следует написать: yx.
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
1. Строится двоичная запись числа N.
2. Далее эта запись обрабатывается по следующему правилу:
а) если число чётное, то к двоичной записи числа слева дописывается 10;
б) если число нечётное, то к двоичной записи числа слева дописывается 1 и справа дописывается 01.
Полученная таким образом запись является двоичной записью искомого числа R.
Например, для исходного числа 410 = 1002 результатом будет являться число 2010 = 101002, а для исходного числа 510 = 1012 результатом будет являться число 5310 = 1101012.
Укажите минимальное число N, после обработки которого с помощью этого алгоритма получается число R, большее, чем 441. В ответе запишите это число в десятичной системе счисления.
Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наибольшего натурального числа А логическое выражение
¬ДЕЛ(x, А)→(ДЕЛ(x, 12)→ ¬ДЕЛ(x, 14))
тождественно истинно (т.е. принимает значение 1 при любом неотрицательном целом значении переменной х)?
В таблице содержатся сведения о дорогах между населёнными пунктами (звёздочка означает, что дорога между соответствующими городами есть). На рисунке справа та же схема дорог изображена в виде графа.
Номер пункта
1
2
3
4
5
6
7
8
Номер пункта
1
*
*
2
*
*
*
3
*
*
4
*
*
5
*
*
*
6
*
*
7
*
*
*
8
*
*
*
Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите номера населённых пунктов Б и В в таблице. В ответе напишите два числа без разделителей: сначала для пункта Б, затем для пункта В.
У исполнителя Удвоитель две команды, которым присвоены номера:
1. вычти четыре
2. умножь на пять
Первая из них уменьшает число на экране на 4, вторая увеличивает его в 5 раз. Составьте алгоритм получения из числа 3 числа 31, содержащии не более пяти команд. В ответе запишите только номера команд.
(Например, 21211 –– это алгоритм:
умножь на пять
вычти четыре
умножь на пять
вычти четыре
вычти четыре,
который преобразует число 3 в число 47.)
Если таких алгоритмов более одного, то запишите любой из них.