Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует 5 команд: Поднять хвост, означающая переход к перемещению без рисования; Опустить хвост, означающая переход в режим рисования; Вперёд n (где n – целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова; Назад n (где n – целое число), вызывающая передвижение в противоположном голове направлении; Направо m (где m – целое число), вызывающая изменение направления движения на m градусов по часовой стрелке, Налево m (где m – целое число), вызывающая изменение направления движения на m градусов против часовой стрелки.
Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из Sкоманд повторится k раз.
Черепахе был дан для исполнения следующий алгоритм:
Определите, сколько точек с целочисленными координатами будут находиться внутри пересечения фигур, ограниченных заданными алгоритмом линиями, включая точки на линиях.
Задание выполняется с использованием прилагаемых файлов.
Откройте файл электронной таблицы, содержащей в каждой строке пять натуральных чисел. Определите количество строк таблицы, в которых квадрат суммы максимального и минимального чисел в строке больше суммы квадратов трёх оставшихся.
Задание выполняется с использованием прилагаемых файлов.
Откройте файл электронной таблицы, содержащей в каждой строке четыре натуральных числа. Определите количество строк таблицы, содержащих числа, для которых выполнены оба условия:
– наибольшее из четырёх чисел меньше суммы трёх других;
– четыре числа можно разбить на две пары чисел с равными суммами.
Задание выполняется с использованием прилагаемых файлов.
Откройте файл электронной таблицы, содержащей в каждой строке четыре натуральных числа. Определите количество строк таблицы, содержащих числа, для которых выполнены оба условия:
– наибольшее из четырёх чисел меньше суммы трёх других;
– четыре числа нельзя разбить на две пары чисел с равными суммами.
Задание выполняется с использованием прилагаемых файлов.
Откройте файл электронной таблицы, содержащей в каждой строке четыре натуральных числа. Определите количество строк таблицы, содержащих числа, для которых выполнены оба условия:
– наибольшее из четырёх чисел меньше суммы трёх других;
– четыре числа нельзя разбить на две пары чисел с равными суммами.
Задание выполняется с использованием прилагаемых файлов.
Откройте файл электронной таблицы, содержащей в каждой строке четыре натуральных числа. Определите количество строк таблицы, содержащих числа, для которых выполнены оба условия:
– наибольшее из четырёх чисел меньше суммы трёх других;
– четыре числа можно разбить на две пары чисел с равными суммами.
Задание выполняется с использованием прилагаемых файлов.
Откройте файл электронной таблицы, содержащей в каждой строке четыре натуральных числа. Определите количество строк таблицы, содержащих числа, для которых выполнены оба условия:
– наибольшее из четырёх чисел меньше суммы трёх других;
– четыре числа нельзя разбить на две пары чисел с равными суммами.
Задание выполняется с использованием прилагаемых файлов.
Откройте файл электронной таблицы, содержащей в каждой строке четыре натуральных числа. Определите количество строк таблицы, содержащих числа, для которых выполнены оба условия:
– наибольшее из четырёх чисел меньше суммы трёх других;
– четыре числа можно разбить на две пары чисел с равными суммами.
Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует 5 команд: Поднять хвост, означающая переход к перемещению без рисования; Опустить хвост, означающая переход в режим рисования; Вперёд n (где n – целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова; Назад n (где n – целое число), вызывающая передвижение в противоположном голове направлении; Направо m (где m – целое число), вызывающая изменение направления движения на m градусов по часовой стрелке, Налево m (где m – целое число), вызывающая изменение направления движения на m градусов против часовой стрелки.
Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из Sкоманд повторится k раз.
Черепахе был дан для исполнения следующий алгоритм:
Определите, сколько точек с целочисленными координатами будут находиться внутри пересечения фигур, ограниченных заданными алгоритмом линиями, включая точки на линиях.
Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует 5 команд: Поднять хвост, означающая переход к перемещению без рисования; Опустить хвост, означающая переход в режим рисования; Вперёд n (где n – целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова; Назад n (где n – целое число), вызывающая передвижение в противоположном голове направлении; Направо m (где m – целое число), вызывающая изменение направления движения на m градусов по часовой стрелке, Налево m (где m – целое число), вызывающая изменение направления движения на m градусов против часовой стрелки.
Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из Sкоманд повторится k раз.
Черепахе был дан для исполнения следующий алгоритм:
Определите, сколько точек с целочисленными координатами будут находиться внутри пересечения фигур, ограниченных заданными алгоритмом линиями, включая точки на линиях.