OpenFIPI 2.0
5
5
930BF4
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
1. Строится двоичная запись числа N.
2. Далее эта запись обрабатывается по следующему правилу:
а) если сумма цифр в двоичной записи числа чётная, то к этой записи справа дописывается 0, а затем два левых разряда заменяются на 10;
б) если сумма цифр в двоичной записи числа нечётная, то к этой записи справа дописывается 1, а затем два левых разряда заменяются на 11.
Полученная таким образом запись является двоичной записью искомого числа R.
Например, для исходного числа 610 = 1102 результатом является число 10002 = 810, а для исходного числа 410 = 1002 результатом является число 11012 = 1310.
Укажите минимальное число N, после обработки которого с помощью этого алгоритма получается число R, большее 29. В ответе запишите это число в десятичной системе счисления.
for n in range(1, 100):
b = bin(n)[2:]
if b.count('1') % 2 == 0:
b = b + '0'
b = '10' + b[2:]
else:
b = b + '1'
b = '11' + b[2:]
r = int(b, 2)
if r > 29:
print(n)
break
Просмотреть отправленные ответы 930BF4