OpenFIPI 2.0

82e6AD

undefined

Задание выполняется с использованием прилагаемых файлов.

Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких, что точки каждого подмножества лежат внутри прямоугольника со сторонами длиной H и W, причём эти прямоугольники между собой не пересекаются. Стороны прямоугольников не обязательно параллельны координатным осям. Гарантируется, что такое разбиение существует и единственно для заданных размеров прямоугольников.

Будем называть центром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера минимальна. Для каждого кластера гарантируется единственность его центра. Расстояние между двумя точками на плоскости A(x1, y1) и B(x2, y2) вычисляется по формуле:

В файле A хранятся координаты точек двух кластеров, где H = 6 и W = 4,5 для каждого кластера. В каждой строке записана информация о расположении на карте одной звезды: сначала координата x, затем координата y. Известно, что количество точек не превышает 1000.

В файле Б хранятся координаты точек трёх кластеров, где H = 6, W = 5 для каждого кластера. Известно, что количество точек
не превышает 10 000. Структура хранения информации в файле Б аналогична структуре в файле А.

Известно, что в файле Б имеются координаты ровно трёх «лишних» точек, являющихся аномалиями, возникшими в результате помех при передаче данных. Эти три точки не относятся ни к одному из кластеров, их учитывать не нужно.

Для файла А определите координаты центра каждого кластера, затем найдите два числа: Px – максимальную из абсцисс центров кластеров, и Py – максимальную из ординат центров кластеров.

Для файла Б определите координаты центра каждого кластера, затем найдите два числа: Qx – разность абсцисс центров кластеров с минимальным и максимальным количеством точек, и Qy – разность ординат центров кластеров с минимальным и максимальным количеством точек. Гарантируется, что во всех кластерах количество точек различно.

 

В ответе запишите четыре числа: в первой строке – сначала целую часть абсолютного значения произведения Px × 10 000, затем целую часть абсолютного значения произведения Py × 10 000; во второй строке – сначала целую часть абсолютного значения произведения Qx × 10 000, затем целую часть абсолютного значения произведения Qy × 10 000.

Возможные данные одного из файлов проиллюстрированы графиком.


 

Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющих отношения к заданию.
Для выполнения задания используйте данные из прилагаемого файла.

 

undefined

 

Редактировать

Ответы